The Structure of catena-Octakis- μ-(β-alanine)-trimanganese(II) Hexaperchlorate Dihydrate

By Z. Ciunik and T. Glowiak
Institute of Chemistry, University of Wrocław, 50-383 Wrockaw, Poland

(Received 20 December 1979; accepted 3 March 1980)

Abstract

$\left[\mathrm{Mn}_{3}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{2}\right)_{8}\right]\left(\mathrm{ClO}_{4}\right)_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is orthorhombic, space group $P b c a$, with $a=23.455$ (5), $b=21 \cdot 159$ (5), $c=11 \cdot 187$ (3) $\AA, Z=4$. The structure was refined with $1919 \mathrm{Cu} \mathrm{K} \mathrm{\alpha}$ diffractometer data to $R_{1}=0.082$. The Mn atoms form infinite, almost linear chains along c. The molecules of β-alanine link these atoms by syn, syn and syn,anti carboxyl bridges. One molecule of β-alanine is tridentate, forming $-\mathrm{C}_{-}^{-} \mathrm{O}_{\mathrm{O}}^{-} \mathrm{Mn}(2)$ chelate bonds and a third bond with $\mathrm{Mn}(1)$.

Introduction

Previous crystallographic studies of Mn^{2+} complexes with carboxylic acids (Kay, Almodovar \& Kaplan, 1968; Tranqui, Burlet, Filhol \& Thomas, 1977; Lis, 1977; Carrell \& Glusker, 1973; Schultz, 1974; Karipides \& Reed, 1976) and amino acids (Narayanan \& Venkataraman, 1975; Głowiak \& Ciunik, 1978; Ciunik \& Glowiak, 1978, 1980a,b) showed that a typical feature is their polymeric nature. In polymeric Mn^{2+} amino acid complexes the amino acid molecules occur as zwitterions and are bidentate, linking adjacent Mn^{2+} ions. Infinite chains with single ($\mathrm{Mn}-\mathrm{Mn}$ distance $>$ $5.3 \AA$) or double ($\mathrm{Mn}-\mathrm{Mn}$ distance from 4.8 to $5.0 \AA$) carboxyl bridges are thereby formed. The title compound also is a polymer but one of the amino acid molecules is tridentate and the $\mathrm{Mn}-\mathrm{Mn}$ distances are shorter than those found previously.

Experimental

Colourless crystals were grown from an aqueous solution of β-alanine and manganous perchlorate ($2: 1$) at room temperature. Preliminary Weissenberg photographs indicated an orthorhombic lattice with systematic absences $0 k l, k=2 n+1 ; h 0 l, l=2 n+1 ; h k 0$, $h=2 n+1$, consistent with the space group Pbca. All measurements for a crystal $0.08 \times 0.12 \times 0.25 \mathrm{~mm}$ 0567-7408/80/092029-05\$01.00

Table 1. Crystal data

$\mathrm{C}_{24} \mathrm{H}_{5} \mathrm{Mn}_{n} \mathrm{~N}_{8} \mathrm{O}^{6+5} .6 \mathrm{ClO}_{4}^{-} .2 \mathrm{H}_{2} \mathrm{O}$	Pbca
$a=23.455(5) \AA$	$D_{m}=1.82 \mathrm{Mg} \mathrm{m}^{-3}$
$b=21.159(5)$	$D_{c}=1.81$
$c=11.187(3)$	$\mu(\mathrm{Cu} \times a)=9.50 \mathrm{~mm}^{-1}$
$V=5551.9 \AA^{3}$	$\lambda=1.5418 \AA$
$M_{r}=1510.45$	

were made on a Syntex $P 2_{1}$ computer-controlled four-circle diffractometer equipped with a scintillation counter and a graphite monochromator. The cell parameters were determined by least-squares refinement from the setting angles of 15 reflections given by the automatic centring program. Intensities of 2865 independent reflections were measured up to $2 \theta=135^{\circ}$ with the variable $\theta-2 \theta$ scan technique. The scan rate varied from 2.0 to $20.0^{\circ} \mathrm{min}^{-1}$ depending on the intensity. 1919 reflections with $I>1.96 \sigma(I)$ were used in the analysis. The intensities were corrected for Lorentz and polarization factors, but not for absorption. The crystal data are presented in Table 1.

The heavy-atom method was employed for the phase determination. A satisfactory solution of the Patterson synthesis was $x \sim 0.03, y \sim 0, z=0.32$ and $x=0, y=$ $0, z=0$ for two Mn atoms. All non-H atoms were found from Fourier and difference syntheses. Fullmatrix least-squares refinement first with isotropic then anisotropic thermal parameters gave $R_{1}\left(=\sum| | F_{o} \mid-\right.$ $\left.\left|F_{c}\right|\left|/ \sum\right| F_{o} \mid\right)=0.115$ and 0.085 , respectively. At this stage, sixteen H atoms from β-alanine molecules with calculated positions ($\mathrm{C}-\mathrm{H}=1.0 \AA$ and $B_{\text {iso }}=3.0 \AA^{2}$) were included but not refined. Refinement reduced R_{1} to 0.082 and $R_{2}\left[=\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \sum w\left(F_{o}\right)^{2}\right]^{1 / 2}$ to 0.067.* A final difference synthesis did not show the H atoms from the NH_{3} group and $\mathrm{H}_{2} \mathrm{O}$ molecule. The function minimized was $\sum w\left(F_{o}-F_{c}\right)^{2}$ with $w=$ $1 / \sigma^{2}(F)$. Scattering factors for neutral atoms were

[^0]Table 2. Final positional parameters ($\times 10^{4}$, for $\mathrm{H} \times 10^{3}$) with e.s.d.'s in parentheses

	x	y	z
	x	0	0
$\mathrm{Mn}(1)$	0	0	0
$\mathrm{Mn}(2)$	$-357(1)$	$-45(1)$	$-3202(2)$
$\mathrm{Cl}(1)$	$2522(2)$	$-6(3)$	$4494(4)$
$\mathrm{Cl}(2)$	$2521(2)$	$2600(2)$	$4071(4)$
$\mathrm{Cl}(3)$	$4767(2)$	$2547(2)$	$3876(5)$
$\mathrm{O}(W)$	$726(5)$	$2198(5)$	$3486(11)$
$\mathrm{O}(11)$	$3086(6)$	$-186(6)$	$4665(16)$
$\mathrm{O}(1)$	$2474(5)$	$676(5)$	$4699(11)$
$\mathrm{O}(1)$	$2382(10)$	$-92(8)$	$3299(13)$
$\mathrm{O}(41)$	$2138(6)$	$-329(6)$	$5254(17)$
$\mathrm{O}(12)$	$2191(6)$	$2340(6)$	$4997(12)$
$\mathrm{O}(22)$	$2148(6)$	$2844(6)$	$3190(13)$
$\mathrm{O}(32)$	$2866(6)$	$2123(7)$	$3577(15)$
$\mathrm{O}(42)$	$2873(7)$	$3076(7)$	$4492(13)$
$\mathrm{O}(3)$	$4565(7)$	$2919(7)$	$2966(19)$
$\mathrm{O}(23)$	$5359(7)$	$2743(6)$	$4066(13)$
$\mathrm{O}(33)$	$4802(7)$	$1936(6)$	$3482(18)$
$\mathrm{O}(43)$	$4405(10)$	$2579(8)$	$4765(22)$
$\beta-\mathrm{Alanine}$,	molecule A		
$\mathrm{O}(1)$	$349(4)$	$-563(4)$	$1502(8)$
$\mathrm{O}(2)$	$1032(5)$	$-720(5)$	$2844(9)$
$\mathrm{C}(1)$	$832(7)$	$-819(7)$	$1777(16)$
$\mathrm{C}(2)$	$1124(7)$	$-1235(8)$	$946(15)$
$\mathrm{C}(3)$	$1605(8)$	$-1616(7)$	$1492(15)$
$\mathrm{N}(1)$	$2087(5)$	$-1212(6)$	$1900(13)$

β-Alanine, molecule B

O(3)	$606(4)$	$771(5)$	$220(9)$
$\mathrm{O}(4)$	$878(5)$	$649(5)$	$2135(11)$
$\mathrm{C}(4)$	$905(7)$	$896(7)$	$1083(17)$
$\mathrm{C}(5)$	$1369(7)$	$1424(8)$	$974(17)$
$\mathrm{C}(6)$	$1860(7)$	$1348(7)$	$1881(20)$
$\mathrm{N}(2)$	$1679(5)$	$1364(6)$	$3149(12)$
R-Alanine,	molecule C		
$\mathrm{O}(5)$	$615(5)$	$-402(5)$	$-1270(10)$
$\mathrm{O}(6)$	$360(5)$	$-650(5)$	$-3115(10)$
$\mathrm{C}(7)$	$699(8)$	$-657(7)$	$-2244(17)$
$\mathrm{C}(8)$	$1268(7)$	$-980(8)$	$-2430(7)$
$\mathrm{C}(9)$	$1270(7)$	$-1427(9)$	$-3499(16)$
$\mathrm{N}(3)$	$1132(6)$	$-1128(6)$	$-4700(11)$

β-Alanine, molecule D

$\mathrm{O}(7)$	$226(5)$	$673(4)$	$-3921(9)$
$\mathbf{O}(8)$	$829(5)$	$409(5)$	$-5362(10)$
$\mathrm{C}(10)$	$709(7)$	$673(7)$	$-4387(16)$
$\mathrm{C}(11)$	$1177(7)$	$1023(8)$	$-3768(17)$
$\mathrm{C}(12)$	$1134(8)$	$1061(8)$	$-2416(17)$
$\mathrm{N}(4)$	$636(5)$	$1392(6)$	$-1953(12)$
$\mathrm{H}(1)$	131	-98	28
$\mathrm{H}(2)$	84	-153	56
$\mathrm{H}(3)$	174	-196	91
$\mathrm{H}(4)$	144	-187	221
$\mathrm{H}(5)$	118	186	114
$\mathrm{H}(6)$	152	146	12
$\mathrm{H}(7)$	216	169	170
$\mathrm{H}(8)$	205	93	166
$\mathrm{H}(9)$	139	-121	-167
$\mathrm{H}(10)$	159	-65	-259
$\mathrm{H}(11)$	97	-178	-331
$\mathrm{H}(12)$	165	-167	-353
$\mathrm{H}(13)$	119	147	-405
$\mathrm{H}(14)$	156	82	-398
$\mathrm{H}(15)$	151	126	-209
$\mathrm{H}(16)$	115	60	-209

taken from Cromer \& Waber (1974). All calculations were performed with the Syntex XTL structure determination system (Nova 1200 computer and additional external disc memory).

Results and discussion

The crystal structure, which is defined by the cell dimensions, the positional parameters of Table 2 and the space-group symmetry, consists of infinite, almost linear chains of Mn^{2+} ions parallel to z . The molecules of β-alanine situated along these chains form layers which are stacked in the y direction. Each layer consists of parallel polymeric chains of formula $\left[\mathrm{Mn}_{1.5}(\beta-\right.$ ala) $)_{4}^{3 n+}$. A fragment of a single chain is presented in Fig. 1.

The ClO_{4}^{-}ions and $\mathrm{H}_{2} \mathrm{O}$ molecules located between adjacent polymer chains are acceptors of most hydrogen bonds in the crystal, in which the NH_{3} groups of the β-alanine molecules and the water molecule are donors. Since in the last difference synthesis no H atoms were located, the lengths and angles summarized in Table 3 correspond to probable hydrogen bonds.

The Mn atoms have an octahedral coordination forming six bonds each with the O atoms of the β-alanine carboxyl groups. The coordination polyhedron around $\mathrm{Mn}(1)$ formed by the O atoms from six β-alanine molecules is almost an ideal octahedron. The average length of $\mathrm{Mn}(1)-\mathrm{O}$ is $2.20 \pm 0.02 \AA$ (e.s.d.'s for $\mathrm{Mn}-\mathrm{O}$ bonds are $0.01 \AA$) and deviations of valency angles from 90° range from 2 to 4°. The lengths of all bonds and angles in the crystal are summarized in Tables 4 and 5. The coordination octahedron around $\mathrm{Mn}(2)$ formed by the atoms from five β-alanine molecules is very distorted. The lengths of $\mathrm{Mn}(2)-\mathrm{O}$ range from $2 \cdot 10$ (1) to 2.30 (1) \AA and deviations of valency angles from 90° are considerable (32.3° maximum). The best planes are presented in Table 6

Fig. 1. A fragment of the structure viewed down \mathbf{b}.

Table 3. Hydrogen-bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

Symmetry code superscript: none x, y, z; (i) $-x,-y,-z$; (ii) $-x,-y$, $-1-z$; (iii) $x, y, 1+z$; (iv) $-\frac{1}{2}+x, \frac{1}{2}-y, 1-z$; (v) $-\frac{1}{2}+x, y, \frac{1}{2}-z$; (vi) $\frac{1}{2}-x,-y,-\frac{1}{2}+z$; (vii) $\frac{1}{2}-x,-\frac{1}{2}+y, z$; (viii) $x, y,-1+z$; (ix) $\frac{1}{2}-x,-\frac{1}{2}+y,-1+z$; (x) $x, \frac{1}{2}-y,-\frac{1}{2}+z$; (xi) $-\frac{1}{2}+x, \frac{1}{2}-y,-z$.

Donor	Acceptor	D \cdots A	$\mathrm{C}-\mathrm{N} \cdots{ }^{\text {a }}$
$\mathrm{O}(W)$	$\mathrm{O}\left(233^{\text {lv }}\right.$)	2.87 (2)	
$\mathrm{O}(W)$	O(23)	$3 \cdot 20$ (2)	
$\mathrm{O}(W)$	$\mathrm{O}\left(33^{\nu}\right)$	$3 \cdot 14$ (2)	
$\mathrm{C}(3)-\mathrm{N}(1)$	$\mathrm{O}\left(21^{\text {vi }}\right.$)	2.90 (2)	$103 \cdot 5$ (9)
$\mathrm{C}(3)-\mathrm{N}(1)$	O(31)	2.92 (2)	144.0 (10)
$\mathrm{C}(3)-\mathrm{N}(1)$	O (22 ${ }^{\text {vil }}$)	3.05 (2)	102.5 (9)
$\mathrm{C}(6)-\mathrm{N}(2)$	$\mathrm{O}(W)$	2.88 (2)	111.2 (10)
$\mathrm{C}(6)-\mathrm{N}(2)$	$\mathrm{O}(21)$	2.93 (2)	112.0 (10)
$\mathrm{C}(6)-\mathrm{N}(2)$	$\mathrm{O}(12)$	$3 \cdot 16$ (2)	122.1 (10)
$\mathrm{C}(9)-\mathrm{N}(3)$	O (41 ${ }^{\text {vili }}$)	2.90 (2)	94.9 (9)
$\mathrm{C}(9)-\mathrm{N}(3)$	$\mathrm{O}\left(42^{\text {ix }}\right.$)	3.02 (2)	82.4 (9)
$\mathrm{C}(9)-\mathrm{N}(3)$	$\mathrm{O}\left(43^{1 \times}\right)$	3.07 (2)	83.6 (9)
$\mathrm{C}(12)-\mathrm{N}(4)$	$\mathrm{O}\left(W^{x}\right)$	3.03 (2)	118.3 (10)
$\mathrm{C}(12)-\mathrm{N}(4)$	$\mathrm{O}(3)$	2.76 (2)	96.0 (10)
$\mathrm{C}(12)-\mathrm{N}(4)$	$\mathrm{O}\left(1{ }^{\text {i }}\right.$)	2.95 (2)	113.8 (10)
$\mathrm{C}(12)-\mathrm{N}(4)$	O(13 ${ }^{\text {x }}$)	$3 \cdot 12$ (2)	137.8 (10)
$\mathrm{C}(12)-\mathrm{N}(4)$	$\mathrm{O}\left(23{ }^{\text {x }}\right.$)	3.06 (2)	$100 \cdot 5$ (10)

Acceptor(1)	Donor	Acceptor(2)	$A(1) \cdots D \cdots A(2)$
$\mathrm{O}\left(233^{\text {lV }}\right.$)	$\mathrm{O}(W)$	$\mathrm{O}\left(23{ }^{\text {V }}\right.$	139.0 (6)
$\mathrm{O}\left(233^{\text {iv }}\right.$)	$\mathrm{O}(W)$	$\mathrm{O}\left(33^{v}\right)$	118.0 (6)
$\mathrm{O}\left(23{ }^{\text {liv }}\right.$)	$\mathrm{O}(W)$	$\mathrm{O}\left(33{ }^{\text {V }}\right.$	41.5 (4)
O(21)	$\mathrm{N}(1)$	$\mathrm{O}(31)$	93.1 (6)
O(21)	N(1)	$\mathrm{O}\left(22^{\text {vil }}\right.$)	116.7 (6)
O(31)	$\mathrm{N}(1)$	$\mathrm{O}\left(22^{\text {vil }}\right.$)	98.0 (6)
$\mathrm{O}(\underline{W})$	N(2)	$\mathrm{O}(21)$	136.2 (6)
$\mathrm{O}(W)$	N(2)	$\mathrm{O}(12)$	78.9 (5)
$\mathrm{O}(21)$	N(2)	$\mathrm{O}(12)$	$72 \cdot 3$ (4)
$\mathrm{O}\left(41^{\text {vili }}\right.$)	N(3)	$\mathrm{O}\left(42^{1 \times}\right)$	72.0 (5)
$\mathrm{O}\left(41^{\text {vili }}\right.$)	N(3)	$\mathrm{O}\left(43^{1 \times}\right)$	148.1 (7)
$\mathrm{O}\left(42^{\text {x }}\right.$)	$\mathrm{N}(3)$	$\mathrm{O}\left(43^{\text {ix }}\right.$)	$76 \cdot 2$ (6)
$\mathrm{O}\left(W^{x}\right)$	N(4)	$\mathrm{O}(3)$	109.1 (5)
$\mathrm{O}\left(W^{\times}\right)$	N(4)	$\mathrm{O}\left(1{ }^{\text {' }}\right.$)	127.8 (5)
$\mathrm{O}\left(W^{\mathrm{x}}\right)$	N(4)	$\mathrm{O}\left(13^{\text {x }}\right.$)	69.8 (5)
$\mathrm{O}\left(W^{\times}\right)$	N(4)	$\mathrm{O}\left(23{ }^{\text {x1 }}\right.$)	63.3 (4)
$\mathrm{O}(3)$	N(4)	$\mathrm{O}\left(1^{\text {l }}\right.$)	63.0 (4)
$\mathrm{O}(3)$	$\mathrm{N}(4)$	$\mathrm{O}(13 \times 1)$	121.4 (6)
O(3)	N(4)	$\mathrm{O}(23 \times 1)$	163.4 (6)
$\mathrm{O}\left(1{ }^{\prime}\right)$	N(4)	$\mathrm{O}\left(13{ }^{\text {x1 }}\right.$)	73.0 (5)
O(1)	N(4)	$\mathrm{O}\left(23{ }^{\text {xi }}\right.$)	108.8 (5)
$\mathrm{O}\left(13^{\text {x1 }}\right.$)	N(4)	$\mathrm{O}\left(23{ }^{\text {x1 }}\right.$)	43.0 (5)

(planes 1, 2). $\mathrm{O} \cdots \mathrm{O}$ contacts in the $\mathrm{Mn}(2)$ polyhedron range from $[\mathrm{O}(4) \cdots \mathrm{O}(8)] 2.85$ to $[\mathrm{O}(7) \cdots \mathrm{O}(8)] 3.47$ \AA. The main reason for such large distortions is the chelated coordination of $\mathrm{Mn}(2)$ by the carboxyl group of β-alanine molecule A, being, to our knowledge, the first case of this type of $\mathbf{M n}^{2+}$ coordination. Similar coordination is frequently found in calcium compounds where the metal ions exhibit a coordination number higher than 6 (Einspahr \& Bugg, 1977). The lengths $\mathrm{Mn}\left(2^{\mathrm{i}}\right)-\mathrm{O}(1) \quad 2 \cdot 30(1)$ and $\mathrm{Mn}\left(2^{2}\right)-\mathrm{O}(2) 2 \cdot 30(1)$ \AA are longer than the $\mathrm{Mn}-\mathrm{O}$ (carboxyl) lengths (2.23 \AA maximum). $\operatorname{Mn}\left(2^{1}\right)$ is located precisely midway between the two O atoms of the chelating carboxyl

Table 4. Bond lengths (\AA) with e.s.d.'s in parentheses

$\mathrm{Mn}(1)-\mathrm{O}(1)$	$2.217(9)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.51(3)$
$\mathrm{Mn}(1)-\mathrm{O}(3)$	$2.18(1)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.53(3)$
$\mathrm{Mn}(1)-\mathrm{O}(5)$	$2.20(1)$	$\mathrm{C}(9)-\mathrm{N}(3)$	$1.52(2)$
$\mathrm{Mn}(2)-\mathrm{O}\left(\left(^{\prime}\right)\right.$	$2.30(1)$	$\mathrm{C}(10)-\mathrm{O}(7)$	$1.25(2)$
$\mathrm{Mn}(2)-\mathrm{O}\left(2^{\prime}\right)$	$2.30(1)$	$\mathrm{C}(10)-\mathrm{O}(8)$	$1.26(2)$
$\mathrm{Mn}(2)-\mathrm{O}\left(4^{\prime}\right)$	$2.13(1)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.49(2)$
$\mathrm{Mn}(2)-\mathrm{O}(6)$	$2.11(1)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.52(3)$
$\mathrm{Mn}(2)-\mathrm{O}(7)$	$2.20(1)$	$\mathrm{C}(12)-\mathrm{N}(4)$	$1.46(2)$
$\mathrm{Mn}(2)-\mathrm{O}\left(8^{1 i}\right)$	$2.10(1)$	$\mathrm{Cl}(1)-\mathrm{O}(11)$	$1.39(1)$
$\mathrm{C}(1)-\mathrm{O}(1)$	$1.29(2)$	$\mathrm{Cl}(1)-\mathrm{O}(21)$	$1.46(1)$
$\mathrm{C}(1)-\mathrm{O}(2)$	$1.30(2)$	$\mathrm{Cl}(1)-\mathrm{O}(31)$	$1.39(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.45(2)$	$\mathrm{Cl}(1)-\mathrm{O}(1)$	$1.42(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.52(2)$	$\mathrm{Cl}(2)-\mathrm{O}(12)$	$1.40(1)$
$\mathrm{C}(3)-\mathrm{N}(1)$	$1.49(2)$	$\mathrm{Cl}(2)-\mathrm{O}(22)$	$1.42(2)$
$\mathrm{C}(4)-\mathrm{O}(3)$	$1.22(2)$	$\mathrm{Cl}(2)-\mathrm{O}(32)$	$1.41(2)$
$\mathrm{C}(4)-\mathrm{O}(4)$	$1.29(2)$	$\mathrm{Cl}(2)-\mathrm{O}(42)$	$1.39(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.57(2)$	$\mathrm{Cl}(3)-\mathrm{O}(13)$	$1.37(2)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.54(3)$	$\mathrm{Cl}(3)-\mathrm{O}(23)$	$1.47(2)$
$\mathrm{C}(6)-\mathrm{N}(2)$	$1.48(3)$	$\mathrm{Cl}(3)-\mathrm{O}(33)$	$1.31(3)$
$\mathrm{C}(7)-\mathrm{O}(5)$	$1.23(2)$	$\mathrm{Cl}(3)-\mathrm{O}(43)$	$1.37(2)$
$\mathrm{C}(7)-\mathrm{O}(6)$	$1.26(2)$		

Table 5. Valency angles $\left(^{\circ}\right)$ with e.s.d.'s in parentheses

1) $-\mathrm{Mn}(1)-\mathrm{O}(3)$	94.3 (3)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	117.8 (14)
$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{O}(5)$	92.3 (4)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	121.0 (14)
$\mathrm{O}(3)-\mathrm{Mn}(1)-\mathrm{O}(5)$	86.3 (4)	$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	121.0(15)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{Mn}(2)-\mathrm{O}\left(2^{\prime}\right)$	57.7 (3)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	114.6 (14)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{Mn}(2)-\mathrm{O}\left(4^{\prime}\right)$	82.9 (4)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(1)$	112.6 (14)
$\mathrm{O}\left(1{ }^{1}\right)-\mathrm{Mn}(2)-\mathrm{O}(6)$	$107 \cdot 1$ (4)	$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{O}(4)$	$127 \cdot 3$ (16)
$\mathrm{O}\left(1^{1}\right)-\mathrm{Mn}(2)-\mathrm{O}(7)$	84.9 (4)	$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	119.5 (15)
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{Mn}(2)-\mathrm{O}\left(4^{\prime}\right)$	85.9 (4)	$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(5)$	113.2 (14)
$\mathrm{O}\left(2^{1}\right)-\mathrm{Mn}(2)-\mathrm{O}(7)$	90.3 (4)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$113 \cdot 1$ (14)
$\mathrm{O}\left(2^{\text {l }}\right.$) $-\mathrm{Mn}(2)-\mathrm{O}\left(8^{\text {II }}\right.$)	91.6 (4)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(2)$	114.5 (14)
$\mathrm{O}\left(4^{\text {II }}\right.$)-Mn(2)-O(6)	93.9 (4)	$\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{O}(6)$	$125 \cdot 3$ (16)
$\mathrm{O}\left(4^{\text {II }}\right.$ - $-\mathrm{Mn}(2)-\mathrm{O}\left(8^{\text {II }}\right.$)	84.6 (4)	$\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(8)$	117.4 (15)
$\mathrm{O}(6)-\mathrm{Mn}(2)-\mathrm{O}(7)$	86.6 (4)	$\mathrm{O}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	117.2 (15)
$\mathrm{O}(6)-\mathrm{Mn}(2)-\mathrm{O}\left(8^{\text {II }}\right.$)	103.5 (4)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	112.9 (15)
$\mathrm{O}(7)-\mathrm{Mn}(2)-\mathrm{O}\left(8^{\prime \prime}\right)$	107.6 (4)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{N}(3)$	115.8 (14)
$\mathrm{Mn}(1)-\mathrm{O}(1)-\mathrm{Mn}\left(2^{1}\right)$	109.2 (4)	$\mathrm{O}(7)-\mathrm{C}(10)-\mathrm{O}(8)$	124.4 (15)
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Mn}(1)$	136.9 (10)	$\mathrm{O}(7)-\mathrm{C}(10)-\mathrm{C}(11)$	118.3 (15)
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Mn}\left(2^{\prime}\right)$	91.8 (9)	$\mathrm{O}(8)-\mathrm{C}(10)-\mathrm{C}(11)$	117.3 (15)
$\mathrm{C}(1)-\mathrm{O}(2)-\mathrm{Mn}\left(2^{\prime}\right)$	91.4 (9)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$116 \cdot 0$ (15)
$\mathrm{C}(4)-\mathrm{O}(3)-\mathrm{Mn}$ (1)	128.7 (10)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{N}(4)$	115.7 (15)
$\mathrm{C}(4)-\mathrm{O}(4)-\mathrm{Mn}\left(2^{\prime}\right)$	141.4(11)	$\mathrm{O}(11)-\mathrm{Cl}(1)-\mathrm{O}(21)$	108.7 (8)
$\mathrm{C}(7)-\mathrm{O}(5)-\mathrm{Mn}(1)$	147.9 (11)	$\mathrm{O}(11)-\mathrm{Cl}(1)-\mathrm{O}(31)$	108.7 (10)
$\mathrm{C}(7)-\mathrm{O}(6)-\mathrm{Mn}(2)$	$123 \cdot 1$ (11)	$\mathrm{O}(11)-\mathrm{Cl}(1)-\mathrm{O}(41)$	112.9 (10)
$\mathrm{C}(10)-\mathrm{O}(7)-\mathrm{Mn}(2)$	135.9 (10)	$\mathrm{O}(21)-\mathrm{Cl}(1)-\mathrm{O}(31)$	105.2 (9)
$\mathrm{C}(10)-\mathrm{O}(8)-\mathrm{Mn}\left(2^{11}\right)$	135.2(11)	$\mathrm{O}(21)-\mathrm{Cl}(1)-\mathrm{O}(41)$	109.5 (9)
$\mathrm{O}(31)-\mathrm{Cl}(1)-\mathrm{O}(41)$	111.4 (10)	$\mathrm{O}(13)-\mathrm{Cl}(3)-\mathrm{O}(23)$	105.8 (10)
$\mathrm{O}(12)-\mathrm{Cl}(2)-\mathrm{O}(22)$	108.4 (8)	$\mathrm{O}(13)-\mathrm{Cl}(3)-\mathrm{O}(33)$	109.0 (11)
$\mathrm{O}(12)-\mathrm{Cl}(2)-\mathrm{O}(32)$	109.0 (9)	$\mathrm{O}(13)-\mathrm{Cl}(3)-\mathrm{O}(43)$	108.1 (13)
$\mathrm{O}(12)-\mathrm{Cl}(2)-\mathrm{O}(42)$	111.2 (9)	$\mathrm{O}(23)-\mathrm{Cl}(3)-\mathrm{O}(33)$	104.8 (10)
$\mathrm{O}(22)-\mathrm{Cl}(2)-\mathrm{O}(32)$	110.1 (9)	$\mathrm{O}(23)-\mathrm{Cl}(3)-\mathrm{O}(43)$	119.4 (12)
$\mathrm{O}(22)-\mathrm{Cl}(2)-\mathrm{O}(42)$	109.9 (9)	$\mathrm{O}(33)-\mathrm{Cl}(3)-\mathrm{O}(43)$	109.4 (12)
(32)-Cl(2)-O(42)			

group $\left[\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Mn}\left(2^{\mathrm{i}}\right)=91.8(9)^{\circ}, \mathrm{C}(1)-\mathrm{O}(2)-\right.$ $\left.\operatorname{Mn}\left(2^{\text {i }}\right)=91.4(9)^{\circ}\right]$ and lies near the plane of $\mathrm{C}(2) \mathrm{C}(1) \mathrm{O}(1) \mathrm{O}(2)$ (Table 6, plane 3).
$\mathrm{O}(1)$ forms another short bond with $\mathrm{Mn}(1) \mathrm{Mn}(1)$ and $\mathrm{Mn}(2)$ are connected additionally by two syn,syn carboxyl bridges from two β-alanine molecules, B and C. Deviations of the Mn atoms from the best planes of these bridging carboxyl groups do not exceed $0.5 \AA$ (Table 6, planes 4, 5). The $\mathrm{Mn}(1)-\mathrm{Mn}(2)$ distance is

Table 6. Least-squares planes
Values are given in the following order: atoms defining the plane, equation of the plane, and deviations (\AA) of atoms from the plane with e.s.d.'s in parentheses.

Plane 1: $O(1), O(2), O\left(6^{1}\right), O\left(8^{\text {iII }}\right)$ $0.5175 X+0.6563 Y-0.5490 Z+1.3692=0$
$\mathrm{O}(1) 0.089$ (9), $\mathrm{O}(2)-0.125(10), \mathrm{O}\left(6^{1}\right)-0.078$ (11),
$\mathrm{O}\left(8^{\text {III }}\right) 0.095$ (11), $\mathrm{Mn}\left(2^{1}\right)-0.101$ (2)
Plane 2: $\mathrm{O}(1), \mathrm{O}(4), \mathrm{O}\left(7^{7}\right), \mathrm{O}\left(8^{\mathrm{III}}\right)$
$-0.7547 X+0.6386 Y-0.1505 Z+1.4045=0$
$\mathrm{O}(1)-0.227$ (9), $\mathrm{O}(4) 0.367$ (11), $\mathrm{O}\left(7^{\mathrm{i}}\right) 0.235$ (11), $\mathrm{O}\left(8^{\text {III }}\right)-\mathbf{0 . 2 9 0}(11), \mathrm{Mn}\left(2^{1}\right) 0.295$ (2)
Plane 3: $\mathrm{O}(1), \mathrm{O}(2), \mathrm{C}(1), \mathrm{C}(2)$

$$
0.4965 X+0.7923 Y-0.3545 Z+1 \cdot 1300=0
$$

$\mathrm{O}(1)-0.002(9), \mathrm{O}(2)-0.003$ (10), C(1) 0.021 (16), $\mathrm{C}(2)-0.007$ (17), C(3)-0.301 (17), $\mathrm{N}(1) 0.775$ (13), $\operatorname{Mn}(1) 1 \cdot 130, \operatorname{Mn}\left(2^{i}\right) 0 \cdot 352$ (2)
Plane 4: $O(3), O(4), C(4), C(5)$
$0.6651 X-0.6914 Y-0.2821 Z+0.2512=0$
$\mathrm{O}(3)-0.001(10), \mathrm{O}(4)-0.002(11), \mathrm{C}(4) 0.012$ (16),
$\mathrm{C}(5)-0.003$ (17), C(6) 0.588 (16), N(2) -0.116 (13),
$\operatorname{Mn}(1) 0.251, \mathrm{Mn}\left(2^{1}\right)-0.269$ (2)
Plane 5: $\mathrm{O}(5), \mathrm{O}(6), \mathrm{C}(7), \mathrm{C}(8)$

$$
0.4011 X+0.8535 Y-0.3326 Z-0.3222=0
$$

$\mathrm{O}(5) 0.002(10), \mathrm{O}(6) 0.002(10), \mathrm{C}(7)-0.016$ (17),
$\mathrm{C}(8) 0.004$ (17), C(9) -0.403 (18), N(3) 0.455 (13), $\operatorname{Mn}(1)-0.322, \mathrm{Mn}(2) 0.452$ (2)
Plane 6: $O(7), O(8), C(10), C(11)$

$$
-0.2377 X+0.8342 Y-0.4977 Z-3.2439=0
$$

$\mathrm{O}(7) 0.001(10), \mathrm{O}(8) 0.001(11), \mathrm{C}(10)-0.009(16)$,
$\mathrm{C}(11) 0.003$ (18), C(12) -0.659 (18), $\mathrm{N}(4)-0.054$ (12),
$\operatorname{Mn}(2)-1.342$ (2), $\operatorname{Mn}\left(2^{\text {il }}\right) 0.422$ (2)
3.68 A. A similar bridging group was found in manganese acetate tetrahydrate (Tranqui, Burlet, Filhol \& Thomas, 1977), where the $\mathrm{Mn}-\mathrm{Mn}$ distance is $3.6 \AA$. In both cases the $\mathrm{Mn}-\mathrm{Mn}$ distances are longer than those usually found between metal atoms linked by syn,syn carboxyl bridges and longer than those expected for Mn compounds ($3.2 \AA$ maximum). In the presence of two bridging O atoms and a bridging syn, syn carboxyl group the $\mathrm{Mn}-\mathrm{Mn}$ distance is $3.35 \AA$ (Lis, 1977).
$\mathrm{Mn}(2)$ and $\mathrm{Mn}\left(2^{\mathrm{ii}}\right)$ are linked by two syn, anti carboxyl bridges formed by two, crystallographically equivalent, D molecules of β-alanine. The $\mathrm{Mn}(2)-\mathrm{Mn}\left(2^{\mathrm{ii}}\right)$ distance of $4.33 \AA$ is shorter by about $0.5 \AA$ than the values found in analogous groups with Mn atoms (Narayanan \& Venkataraman, 1975; Ciunik \& Głowiak, 1980b; Głowiak, 1980).

The reasons for the deformation of the $\operatorname{Mn}(2)$ octahedron are (a) chelated coordination of β-alanine molecule A and (b) decrease in the $\operatorname{Mn}(2)-\mathrm{Mn}\left(2^{\mathrm{ii}}\right)$ distance resulting in an increase of $\mathrm{O}(7)-\mathrm{Mn}(2)-\mathrm{O}\left(8^{\mathrm{ll}}\right)$ by about 14° compared with the corresponding angles

Table 7. Torsion angles $\left(^{\circ}\right.$) in β-alanine molecules with e.s.d.'s in parentheses

$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	ξ_{A}^{1}	$-166(2)$
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	ξ_{2}^{2}	$10(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(1)$	ξ_{A}^{3}	$-66(2)$
$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	ξ_{A}^{4}	$-156(2)$
$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	ξ_{B}^{1}	$26(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(2)$	ξ_{B}^{2}	$-60(2)$
$\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	ξ_{B}^{3}	$164(2)$
$\mathrm{O}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	ξ_{B}^{3}	$-19(2)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{N}(3)$	ξ^{1}	$59(2)$
$\mathrm{O}(8)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	ξ_{C}^{2}	$-152(2)$
$\mathrm{O}(7)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	ξ_{C}^{3}	$30(2)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{N}(4)$	ξ_{C}^{4}	$-62(2)$

in double carboxyl bridges between Mn atoms. It seems that both disturbances (a) and (b) could not occur independently but are coupled to each other in this case. Deviations of $\operatorname{Mn}(2)$ and $\operatorname{Mn}\left(2^{11}\right)$ from the best plane of the D molecule carboxyl group are -1.342 (2) and 0.422 (2) \AA, respectively (Table 6 , plane 6). Similar deviations of the Mn atoms were found only in polymeric Mn^{2+} amino acid complexes with double carboxyl bridges (Ciunik \& Głowiak, 1980b).

Four crystallographically independent β-alanine molecules, A, B, C and D, occur in the crystals under investigation as zwitterions. Bond lengths and angles in the B, C and D molecules do not differ (within the limits of 3σ) from the corresponding values found for β-alanine (Jose \& Pant, 1965), except for the $\mathbf{C}-\mathrm{C}-\mathrm{N}$ angles which on average are larger by about 7°.

The geometry of the carboxyl group in the chelating A molecules is slightly different. $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$ is smaller by about 9° than the corresponding value in β-alanine, resulting in an increase of the other $\mathrm{C}-\mathrm{C}-\mathrm{O}$ angles. Torsion angles inside the β-alanine molecules are presented in Table 7.

If the conformation of the β-alanine molecule determined by angles $-\xi^{1}, \xi^{2},-\xi^{3}$ is denoted as d and that determined by angles $\xi^{1},-\xi^{2}, \xi^{3}$ is denoted as l, a single chain of the described polymer has a sequence $-d d d, l l l, d l, d l, d d d, l l l, d l-$, where commas denote successive Mn atoms. With the nomenclature of organic polymer chemistry (Saunders, 1973) the chain described has a syndiotactic nature. In the group of polymeric Mn^{2+} amino acid complexes the crystal structure of only one complex built of isotactic chains has been investigated until now (Ciunik \& Głowiak, 1978).

Bond lengths and angles in the ClO_{4}^{-}ions correspond to the values in other crystal structures.

We thank Professor I. Z. Siemion of Wroctaw University for helpful discussion and Dr M. Jaskólski of Poznań University for providing the program STORAN.

This work was supported by the Polish Academy of Science.

References

Carrell, H. L. \& Glusker, J. P. (1973). Acta Cryst. B29, 638-640.
Ciunik, Z. \& Glowiak, T. (1978). Acta Cryst. A34, S141.
Ciunik, Z. \& Glowiak, T. (1980a). Acta Cryst. B36, 12121213.

Ciunik, Z. \& Glowiak, T. (1980b). Inorg. Chim. Acta, 44, I.249-L250.

Cromer, D. T. \& Waber, J. T. (1974). In International Tables for X-ray Crystallography, Vol. IV. Birmingham: Kynoch Press.
Einspahr, H. \& Bugg, C. E. (1977). Proceedings of the International Symposium on Calcium-Binding Proteins and Calcium Function in Health and Disease, Cornell Univ., Ithaca, New York, 5-9 June 1977, ed. by R. H. Wasserman et al., pp. 13-20. New York: NorthHolland.

Glowiak, T. (1980). In the press.
Glowiak, T. \& Ciunik, Z. (1978). Acta Cryst. B34, 1980-1983.
Jose, P. \& Pant, L. M. (1965). Acta Cryst. 18, 806-810.
Karipides, A. \& Reed, A. T. (1976). Inorg. Chem. 15, 44-47.
Kay, M. I., Almodovar, I. A. \& Kaplan, S. F. (1968). Acta Cryst. B24, 1312-1316.
Lis, T. (1977). Acta Cryst. B33, 2964-2966.
Narayanan, P. \& Venkataraman, S. (1975). Z. Kristal$\log r$ 142, 52-81.
Saunders, K. J. (1973). Organic Polymer Chemistry, pp. 36-38. London: Chapman and Hall.
Schultz, B. (1974). Acta Cryst. B30, 1318-1332.
Tranqui, D., Burlet, P., Filhol, A. \& Thomas, M. (1977). Acta Cryst. B33, 1357-1361.

Acta Cryst. (1980). B36, 2033-2037

The Crystal and Absolute Molecular Structure of (+) $)_{546}$-cis- α-Sodium Carbonato[(2S,2'S)-1,1'-ethylenedi-2-pyrrolidinecarboxylato(2-)]cobaltate(III) Trihydrate

By T. C. Woon, M. F. Mackay and M. J. O'Connor
Department of Chemistry, La Trobe University, Bundoora, Victoria 3083, Australia

(Received 7 November 1979; accepted 5 March 1980)

Abstract

Monoclinic crystals of the title compound, $\mathrm{Na}\left[\mathrm{Co}\left(\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}\right)\left(\mathrm{CO}_{3}\right)\right] .3 \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{CoN}_{2} \mathrm{O}_{7}^{-}$.$\mathrm{Na}^{+} .3 \mathrm{H}_{2} \mathrm{O}$, space group $P 2_{1}$, have $a=7.845$ (4), $b=$ 7.760 (2), $c=14.922$ (10) $\AA, \beta=106.51$ (3) ${ }^{\circ}$ and $Z=2$. Refinement with 2463 diffractometer data measured with Mo $K \alpha$ radiation converged at $R=$ 0.059 . The structure consists of $\left[\mathrm{Co}(\text { pren })\left(\mathrm{CO}_{3}\right)\right]^{-}$ complex anions linked into double layers parallel to the (001) planes by $\mathrm{O}-\mathrm{Na}-\mathrm{O}$ and $\mathrm{O}-\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{O}-\mathrm{O}$ bridges. The distorted octahedral complex anion has the cis- α geometrical arrangement and its absolute configuration is $\Delta(\mathrm{OC}-6-13-\mathrm{C})$. The Na^{+}ions have approximate NaO_{6} octahedral coordination.

Introduction

The quadridentate ligand ($2 S, 2^{\prime} S$)-1, 1^{\prime}-ethylenedi-2pyrrolidinecarboxylic acid (1), abbreviated as H_{2}-pren, has been used recently to prepare a series of cobalt(III) complexes including $\mathrm{Na}\left[\mathrm{Co}\right.$ (pren) $\left.\left(\mathrm{CO}_{3}\right)\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (Woon \& O'Connor, 1979).

0567-7408/80/092033-05\$01.00

(1)
${ }^{13} \mathrm{C}$ NMR and absorption spectral measurements indicated that this and related compounds have the symmetrical cis- α structure in aqueous solution. A strong negative circular dichroism band under the ${ }^{1} A_{1 g}$ $\rightarrow{ }^{1} T_{1 g}$ cubic absorption band and the presence of a negative Cotton effect in the visible region of the optical rotatory dispersion spectrum in aqueous solution were used to predict that the complex anion $[\mathrm{Co}$ (pren $\left.)\left(\mathrm{CO}_{3}\right)\right]^{-}$has the Δ absolute configuration (IUPAC Commission on Inorganic Chemical Nomenclature, 1971). The present study was carried out to confirm these predictions.

Experimental

The title compound was prepared by the method of Woon \& O'Connor (1979), and purple tabular crystals © 1980 International Union of Crystallography

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35244 (55 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.
 © 1980 International Union of Crystallography

